
IN DEGREE PROJECT ELECTRICAL ENGINEERING,
SECOND CYCLE, 30 CREDITS

, STOCKHOLM SWEDEN 2016

Scalable 5-Tuple Packet
Classification in Overlay Network-
Based SDN

MUHAMMAD ARIF

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING

Master Thesis Report

Scalable 5-Tuple Packet
Classification in Overlay

Network-Based SDN

Author:

Muhammad Arif

Advisor:

Dr. Albert Cabellos

Universitat Politècnica de Catalunya (UPC)

Dr. Viktoria Fodor

Kungliga Tekniska Högskolan (KTH)

Presented on:

31 August 2016

Abstract

Traditional networking paradigm, with destination-based forwarding, provides
low processing latency in terms of lookup time and it can scale to huge number
of rules for tra�c engineering. On the other hand, it lacks �exibility in terms of
the packet header �elds that can be used to implement the tra�c engineering
rules. The global view of the network or network abstraction is also lacking
here, hence it is harder to program the network.

The �exibility and programmability problem are two reasons, among oth-
ers, that motivate the rise of the Software-De�ned Network (SDN) paradigm:
higher �exibility for tra�c engineering and easier programmability for �ner traf-
�c engineering rules. SDN o�ers a huge degree of �exibility in the network for
tra�c engineering, for example in an OpenFlow-based network infrastructure,
up to 38 packet header �elds can be observed. This degree of �exibility comes
however with a cost in terms of lookup times for packet forwarding, it does not
scale for huge number of rules. The SDN paradigm also introduces the central-
ized control plane, which makes it easier to program the network. One of the
well-known implementation of SDN is an overlay network, which builds a vir-
tual network as an abstraction of the physical network. It simpli�es the logical
topology and provides more �exibility in terms of network programmability. In
the overlay network implementation the rules are placed centrally in the central-
ized controller, rather than distributed to the network devices, hence it is easier
to manage and program the network. The drawback of the centralized rules
storing is that the requirement of storage space to store the rules is increasing
signi�cantly.

Consequently, while SDN o�ers high �exibility and network programmabil-
ity, it comes with problems for tra�c engineering: high processing latency and
storage requirement. With the increasing number of applications hosted in the
network and the increasing needs for �ner tra�c engineering, more scalable ways
to implement �ner tra�c engineering rules are needed, so the system can scale
even with high number of rules.

In this thesis, we address of problem of rule aggregation, a process to combine
multiple rules without losing the accuracy of the original individual rules. We
also address the problem of packet classi�cation, a process to decide which �ow
that a packet belongs to and to determine which action needs to be taken for
that packet. We propose one possible solution for rule aggregation and packet
classi�cation for overlay networks, focusing on 5-tuple tra�c engineering rules,

i

ii

with the goal to minimize the storage space requirement and processing latency.
The observed system performance metrics are the number of entries stored in
the system, the number of entries observed for classi�cation and the lookup
times. The proposed solution is evaluated by means of system-level simulation
and implementation in the Open Overlay Router and Vector Packet Processing
(VPP) platform using synthetic rules generated with real-world distribution.
The results are compared with a system without using the proposed rule ag-
gregation and packet classi�cation method. The results show that with the
incorporation of both methods, the requirement for storage space and the pro-
cessing latency can be reduced signi�cantly. As an example, we note that 58.6%
maximum saving in the storage required and 29.6% maximum delay reduction
can be achieved.

Abstrakt

Den traditionella nätverk paradigm, med destination baserad vidarebefordring,
ger låg bearbetning fördröjning i form av lookup tider och det kan skalas till
stort antal regler för tra�kstyrning. Å andra sidan, det saknar �exibilitet när
det gäller paketrubrikfält, som kan användas för att genomföra tra�kstyrning
reglerna. Den globala utsiktet över nätverket eller nätverksabstraktion saknas
också här, och därför är det svårare att programmera nätverket.

Problem med �exibiliteten och programmerbarheten problem är två skäl,
som, bland annat, motiverar ökningen av Programvarustyrd Network (SDN)
paradigm: större �exibilitet för tra�kstyrning och enklare programmerbarhet
för �nare tra�kstyrningsreglerna. SDN erbjuder ett stort mått av �exibilitet i
nätverket för tra�kstyrning, till exempel i en Open�ow-baserad nätverksinfras-
truktur, upp till 38 pakethuvudfält kan observeras. Denna �exibilitet kommer
dock med en kostnad i form av lookup tider för paketbefordran, det skalar inte
för stort antal regler. SDN paradigmet inför också den centraliserade styrplanet,
vilket gör det lättare att programmera nätverket. En av de välkända genom-
förande av SDN är ett overlay nät, som bygger ett virtuellt nätverk som en
abstraktion av det fysiska nätverket. Det förenklar den logiska topologin och
ger mer �exibilitet när det gäller nätverksprogrammerbarhet. I overlay nätet
är reglerna placerade i centraliserade kontrollern, snarare än distribuerade till
nätverksenheterna, därför är det lättare att hantera och programmera nätver-
ket. Nackdelen med den centraliserade lagring av reglerna är att kravet på
lagringsutrymme för att lagra reglerna ökar avsevärt.

Följaktligen medan SDN ger hög �exibilitet och nätverksprogrammerbarhet,
kommer det med problem för tra�kstyrning: hög processorfördröjning och krav
för lagring. Med det ökande antalet applikationer i nätverket och de ökande
behoven av �nare tra�kstyrning, behövs det mer skalbara sätt att genomföra
�nare tra�kstyrningsregler, så att systemet kan skala även med stort antal regler.

I denna avhandling tar vi itu med problemet med aggregering av reglarna,
en process att kombinera �era regler utan att förlora noggrannheten av de ur-
sprungliga enskilda reglerna. Vi vänder oss också till problemet med paketk-
lassi�cering, en process att avgöra vilket �öde som ett paket tillhör och för att
avgöra vilka åtgärder som behöver vidtas för att viderbefordra paketet. Vi föres-
lår en möjlig lösning för regelnaggregering och paketklassi�cering för overlay-
nätverk, med fokus på 5-tuple tra�kstyrning regler, med målet att minimera
lagerutrymmeskrav och bearbetning latens.

iii

iv

De observerade prestandastatistik är antalet regler som lagrats i systemet,
antalet regler som observerades för klassi�cering och lookup fördröjning.

Den föreslagna lösningen utvärderas med hjälp av systemnivåsimulering och
implementering i en Open Overlay Router och Vector Packet Processing (VPP)
plattform med hjälp av syntetiska regler som genereras med verklig fördelning.
Resultaten jämförs med ett system utan att använda den föreslagna aggregering
och paketklassi�ceringsmetod. Resultaten visar att med införandet av båda
metoderna kan kravet på lagringsutrymme och bearbetningsfördröjning minskas
avsevärt. Som ett exempel kan 58,6% maximal besparing i lagringsutrymme och
29,6% maximal fördröjning reduktion uppnås.

Acknowledgement

I would like to express my gratitude to Dr. Albert Cabellos, for his continouis
support and guidance during the thesis work. I would also like to credit Alberto
Rodriguez-Natal, Albert Lopez and the team from UPC, Barcelona, and also
Florin Coras from Cisco Systems for all the helps provided throughout this
thesis work.

I'm also very grateful to Dr. Viktoria Fodor as my advisor and examiner at
KTH, for all the helps, feedbacks and advices since the start of this thesis work.

Finally, I would also like express my gratitude to my friends and family,
especially my wife, for all the support throughout my master study.

v

Contents

1 Introduction 1
1.1 Problem Statement . 2
1.2 Related Works . 3
1.3 Methodology . 5
1.4 Report Structure . 6

2 Background 7
2.1 Software-De�ned Networking (SDN) 7
2.2 Overlay Network . 9
2.3 Locator/ID Separation Protocol (LISP) 9

3 Open Overlay Router 12
3.1 Components . 12

3.1.1 Mapping System . 13
3.1.2 Ingress/Egress Tunnel Router (xTR) 13
3.1.3 Proxy Ingress/Egress Tunnel Router (PxTR) 14
3.1.4 Re-encapsulating Tunnel Router (RTR) 14

3.2 Sample Use Cases . 14

4 Vector Packet Processing (VPP) 16
4.1 Packet Classi�cation in VPP . 17
4.2 Why VPP? . 19

5 Development 20
5.1 5-Tuple LCAF Implementation 20
5.2 5-Tuple Mapping System . 21
5.3 Rules Aggregation and Flow Classi�cation 24

5.3.1 Rules Aggregation . 24
5.3.2 Flow Classi�cation . 27
5.3.3 Sample Use Case . 30
5.3.4 Implementation in VPP 31

vi

CONTENTS vii

6 Results 36
6.1 Simulation and Testing Environment 36
6.2 Rules Aggregation . 37
6.3 Flow Classi�cation . 38
6.4 Analysis . 39

7 Conclusions 41
7.1 Summary . 41
7.2 Future Works . 42

List of Figures

2.1 SDN Architecture Stack . 8
2.2 Overlay Network . 9
2.3 LISP . 10

3.1 Full OOR Deployment Use Case 15

4.1 VPP Graph Node . 17
4.2 Example for VPP Classi�cation Process 18

5.1 Current LCAF in OOR (2-Tuple) 21
5.2 Proposed 5-Tuple LCAF . 21
5.3 Mapping Lookup Process . 22
5.4 Proposed Mapping System . 23
5.5 Coupling and Wildcarding Process 27
5.6 Proposed Classi�cation Process 28
5.7 O�ine Stage: EBP checking and lookup tables after pre-�ltering 32
5.8 Online Stage . 33
5.9 Classi�cation o�ine stage at VPP 34
5.10 Classi�cation online stage at VPP 35

6.1 Testbed Setup . 37
6.2 Aggregation Result: (a) Aggregated Entries (b) Percentage of

Aggregated Rules . 38
6.3 Number of Entries checked during the classi�cation process . . . 39
6.4 Lookup times comparison . 40

viii

List of Tables

5.1 Number of Mask Possibility: Predicted vs Free Wildcards 25
5.2 Inserted rules by the users . 26
5.3 Aggregated Entries of R0 to R2 30
5.4 Variables for Calculations . 30
5.5 Calculation of Diversity Index . 31
5.6 Calculation for Independence Index 32
5.7 class-new table break down . 33

ix

Chapter 1

Introduction

Nowadays, Internet has been an integral part of our life and regarded as indis-
pensable in this era. Internet is basically interconnectivity of computer networks
with Internet Protocol suite (TCP/IP) as the communication protocol. The
underlying architecture of Internet has not change much since it was designed
many years ago, with IP as the key network protocol. Traditionally, Internet
o�ers best-e�orts service with IP destination-based forwarding. This method
has been proven to provide low processing latency, in terms lookup time, for
packet classi�cation, a process to �nd which �ow that a packet belongs to and
determine which action needs to be taken for the packet. For the traditional
networking, it only considers single �eld (destination address) for packet classi-
�cation, hence the required space to store each rule is small. Because of that,
it is known that traditional networking can scale to huge number of rules for
tra�c engineering.

With the tremendous growth of internet utilization, many applications are
hosted in the Internet, such as websites, e-mail, video streaming, etc. Because of
that, instead of best-e�orts, the future IP networks will need to o�er enhanced
services to the users [30], with �ner �exibility to implement tra�c engineering.
For example, to set maximum allocated bandwidth for video streaming applica-
tions, HTTP access needs to be routed via speci�c network for content �ltering
or the access to speci�c application needs to go through �rewall for security rea-
son. The traditional networking paradigm, with destination-based forwarding,
is lacking of that �exibility, since the detection of those applications cannot be
done by only observing the destination address, but also port number, protocol
and/or other �elds in the packet header.

On top of that, in the traditional networking paradigm, each network device
has its own intelligence to make forwarding decision, so the tra�c engineering
rules need to be implemented in each network device. There is no global view or
abstraction of the network. This makes it more complex to program the network,
in order to implement �ner tra�c engineering rules. The lack of �exibility and
complexity to program the network for �ner tra�c engineering rules of the
current traditional networking paradigm were two reasons, among others, that

1

CHAPTER 1. INTRODUCTION 2

motivate the rise of Software-De�ned Networking (SDN) paradigm.
SDN paradigm o�ers a huge degree of �exibility of the network. The imple-

mentation of SDN, such as OpenFlow-based SDN switches, allows more �exi-
bility in terms of packet header �elds to observe for packet classi�cation. As
much as 38 packet header �elds can be observed in OpenFlow-based switch [31].
SDN is also easier to program for implementing �ner tra�c engineering rules.
It decouples the control plane from the data plane , where the forwarding deci-
sion is made, capability from the network devices and build logically centralized
control plane. By doing so, the control plane now has the global view of the
network, so it is easier to implement complex tra�c engineering rules. One of
the well-known implementation of SDN is overlay network, where a virtual net-
work is built on top of the physical network, to provide simpler logical topology
of the network, hence it is easier to program.

With the increasing number of application hosted in the network, the number
of rules for tra�c engineering is increasing signi�cantly. On top of that, the
requirement for more application-speci�c tra�c engineering is also increasing.
As shown in the examples above, the application-speci�c tra�c engineering
rules needs to observe more packet header �elds. Because of those reasons, the
required space to store more rules, with more �elds in each rules, is increasing,
along with the increase of lookup time when a packet needs to be classi�ed.
The introduction of SDN gives �exibility and centralization of the control plane
that provides the capabilities to observe more packet header �elds and make the
network easier to program, even for complex rules. On the other hand, those
capabilities does not scale well for huge number of rules, since the processing
latency and requirement for storage to store the rules increases. Those problems
are resulting in the need of more scalable packet classi�cation with many �elds
to match. Scalable packet classi�cation has two main goals: faster lookup time
for packet classi�cation and rule aggregation. Rule aggregation is a process
of combining multiple tra�c engineering rules without losing accuracy of the
original individual rules, in order to reduce the storage space requirement.

Scalable packet classi�cation with many-�eld has gained massive interest
from both industry and academic world [7, 8]. There are some proposed solution,
with their own pros and cons. Rottenstreich, et al, in [6], discussed about the
implementation of many-�eld packet classi�cation in TCAM (Ternary Content
Addressable Memory), but it comes with high implementation cost due to the
increase rule size (more �elds to be stored). There were some papers, such
as [12, 13], that discussed about implementing many-�eld classi�cation using
decision-tree, but when the number of �elds in a rule is increasing, the memory
requirement becomes very high and the size of the tree is increasing in both
axis, hence the processing latency is also increasing.

1.1 Problem Statement

From our description above, we can see that the increasing number of application
hosted in the network comes with problems for packet classi�cation, in terms of

CHAPTER 1. INTRODUCTION 3

lookup time and the storage space requirement. The network owners, therefore,
needs to consider the trade-o� between more �exible tra�c engineering and
high performance packet classi�cation. As we can see from the previous works
above, �exibility in terms of the �elds matched in the classi�cation resulted
in the increasing requirement of storage and/or memory usage and also the
increase of processing latency. On the other hand, based on our observation,
only minority of network owners are using the whole 38 packet headers �eld
provided by OpenFlow. This provides the possibility to �nd a solution where
some degree of �exibility can be achieved while minimizing the performance
impact.

In this thesis, we propose rule aggregation and �ow classi�cation method
to reduce both space requirement and processing latency, while also providing
some degree of �exibility in terms of the packet header �elds to be observed.
The �exibility that we provide in this method is classi�cation with 5-tuple in-
formation, including source/destination address, port numbers and protocol.
We do believe that for majority number of network owners, those information
�elds are adequate. We also implement the proposed methods in the overlay
network scenario with Open Overlay Router (OOR) as the control plane and
Vector Packet Processing (VPP) as the data plane. Lastly, we evaluate the per-
formance of the proposed methods in di�erent set of synthetic rules generated
with real-world distribution.

Our �rst objective is to propose rule aggregation algotrithm to minimize the
storage space requirements for a given rulesets with various real-world distribu-
tion in a given network, while still maintaining the �exibility speci�ed above. In
this way, we can analyze the maximum achievable reduction number of rules by
incorporating the aggregation algorithm compared to original ruleset without
aggregation.

Our second objective is to propose packet classi�cation method to minimize
the processing latency for the packet classi�cation in terms of lookup time with
the same setup as previous objective, while still maintaining the accuracy of
the packet classi�cation. In this way, we can analyze the maximum achievable
reduction of lookup time by incorporating the classi�cation method compared
to current classi�cation method.

1.2 Related Works

In this section, several previous studies that relevant to the thesis are summa-
rized, mainly in the area of packet classi�cation. Packet classi�cation has been
a well-known problem that is interesting for the industry and academic world.
There are many proprosed methods for packet classi�cation with their own pros
and cons.

In the past, decision-tree-based approach for packet classi�cation, such as
HiCuts [12] and HyperCuts [9], has been proven to give a good packet classi-
�cation performance by constructing decision tree of the packet header �elds
information. The decision-tree is built with each packet header �elds as the

CHAPTER 1. INTRODUCTION 4

branch node. Incoming packets are checking each branch until a leaf is found.
The size of the tree, especially the number of branches, relates directly to the
number of packet header �elds that needs to be observed during the classi�ca-
tion process. Lim, et al, in [13] proposed improvement for decision-tree based
approach, by using boundary cutting, to increase the e�ectiveness of branching
the decision-tree. The increasing number of packet header �elds in the rules
and the rule size for �ner tra�c engineering is causing the size of the tree to
grow signi�cantly, hence the requirement for storage also increases signi�cantly,
along with the increase of packet classi�cation latency.

Rottenstreich, et al, in [6], explored the implementation of many �eld packet
classi�cation by leveraging TCAM (Ternary Content Addressable Memory), a
specialized memory for high-speed lookup that can accomodate binary entries
and wildcards. In the paper, they presented an algorithm that analyze opti-
mal encoding to represent typical real-life classi�cation database. They also
proposed a solution by combining regular TCAM, to store simple rules, and
modi�ed TCAM, to store more complex rules. Other solution that leverages
TCAM for packet classi�cation was proposed in[34], it combined the usage of
TCAM and decision-tree. SAX-PAC [8] is also using TCAM for packet classi-
�cation and leveraging the capabilities of paralel computing to do fast packet
classi�cation. Those proposed solutions give a low latency for packet classi�-
cation. On the other hand, with the increasing number of rules and rule sizes,
more TCAM devices are needed, hence it leads to high implementation cost.

One other well-known packet classi�cation method is using Tuple Space
Search solution. Srinivasan, et al, in [4] proposed this solution, an algorith-
mic approach for software-based packet classi�cation. In this approach, they
proposed a solution to examine the tuples (packet header �elds) in the database
and combine the rules with same tuple into a single hash table. If new rule is
added and it has di�erent tuple with the available hash tables, new hash table
will be created. Incoming packets need to checks all tables, even after a match
is found. In the case of two or more matches are found, the match with highest
priority will be used. This approach has been used in many implementation,
and one well-known implementation is in Open vSwitch (OVS) [33]. On the
other hand, with the increasing number of tuples that needs to be observed to
implement �ner tra�c engineering, the number of hash tables are also increas-
ing. It can lead to higher processing latency, especially with more number of
rules in the database.

Recently, Hsieh, et al, proposed a solution for packet classi�cation with
multidimensional-cutting via selective bit concatenation (MC-SBC) [20]. For
this solution, they introduced the concept of pre-�ltering by selecting certain
bit position to split the rules in the database to multiple lookup tables with
smaller number of rules in each lookup table. This solution is di�erent with
with Tuple Space Search, that uses the entire tuple to split the database. On
top of that, rather than letting the incoming packets to check all tables, MC-
SBC is also doing a pre-�ltering process for the packets and directing the packet
to a speci�c lookup tables.

In this thesis, we propose a solution for scalable packet classi�cation, to re-

CHAPTER 1. INTRODUCTION 5

duce the processing latency, along with rule aggregation, to reduce the storage
space requirement. The ideas from [20, 4] are used as the basic of the packet
classi�cation method proposal, along with the introduction of rule aggregation
algorithm. In [20], the original rules were used for the calculation of to decide
which bit positions used to split the rules into multiple tables, but in our pro-
posal, the aggregated rules are used for to do the same. Other modi�cation
that we introduce in the proposed methods in this thesis is that we remove
the requirement of calculating wildcard ratio to decide the bit position for pre-
�ltering. Our rule aggregation algorithm assures that wildcards only appear
in the predicted position, hence before the calculation, any bit positions with
wildcards can be removed from the candidate bit position for pre-�ltering. By
doing so, other than reducing the calculation complexity, it also ensures that
each can only be placed in a single lookup table. This modi�cation results in the
decrease of processing latency and storage requirement, especially when many
rules with wildcards are introduced by the users.

1.3 Methodology

This thesis presents an approach to tackle the problem of many-�eld packet
classi�cation in SDN and overlay network with experimental research method-
ology. Experimental research methodology is typical research methodology in
computer networks. By choosing this approach, we aim to demonstrate and
evaluate the performance of the proposed solution by building prototype of it.

The process in this thesis can be broken down into four main phases: pre-
liminary study, development, implementation and evaluation. In the beginning
of this thesis, preliminary study is conducted, which can be divided into lit-
erature review and implementation and code review of the current systems.
Literature review was conducted to get better understanding of the current
state of the art technology in SDN, overlay network and many-�eld packet clas-
si�cation. Implementation and code review of the existing systems was also
done to understand better about how Open Overlay Router (OOR) and Vector
Packet Processing (VPP) platforms works. Then, we developed our solution
for the overlay network based on the knowledge accumulated from the prelim-
inary study. The solution that we developed was rule aggregation algorithm,
based on the details of how VPP classi�er works, and �ow classi�cation method,
based on multidimensional-cutting via selective bit-concatenation method. The
next phase was the implementation phase, where we built the prototype of the
proposed solution. We then evaluated the performance of the prototype by in-
tegrating it to the aforementioned platforms and testing it in the testbed that
simulate real-world simple network environment conditions.

CHAPTER 1. INTRODUCTION 6

1.4 Report Structure

The rest of the report is organized as follows. In Chapter 2, we discuss about
the key terms: SDN, LISP and Overlay Network. Chapter 3 and 4 is dedicated
to explain the platform used for the implementation and testing, Open Overlay
Router and Vector Packet Processing. Then we discuss the detail of the de-
velopment process and the proposed methods in Chapter 5. The results of the
simulation and testing is presented in Chapter 6. In Chapter 7, we include our
analysis, conclusion and our suggestion for future researches.

Chapter 2

Background

In this chapter, we review the basic technologies used in this thesis. First, we
discuss about SDN, as the paradigm that we use in the thesis, and its advantages.
Then, we discuss about overlay network, as the implementation of SDN that we
use in this thesis, the basic concept of it and its advantages. By implementing
overlay network, we can have the abstraction of the network and easiness to
program the network, without the need to make any change in the current
network. One of the available implementation for overlay network that we use
in this thesis is Open Overlay Router (OOR), an open-source platform to create
programmable overlay network. OOR uses Locator/ID Separation Protocol
(LISP) as the base of their architecture. We discuss about the basic of LISP
and its components in the last part of this section, to understand better about
OOR, that will be discussed in the next chapter.

2.1 Software-De�ned Networking (SDN)

SDN is the current trend in the networking world, it introduces a new paradigm
which changes the network architecture. Based on the de�nition from Open
Networking Foundation (ONF)[3], SDN decouples the control plane of a network
from the data plane or the forwarding plane and it is directly programable.
Control plane is where the forwarding decision is made and data plane is where
the actual packet forwarding process takes place by following the decision made
by control plane.

In the traditional network, both planes are tied together, hence networking
devices has their own intellegence to handle incoming and outgoing packets or
tra�c. Due to this distributed intelligence, the devices do not have a global view
of the network, hence it is more complex to con�gure �ner tra�c engineering
for big network. SDN o�ers a solution to tackle the problem, by stripping
the control plane capabibility from the network devices and build a logically
centralized control plane, called controller, so it will have a global view of the
overall network. The controller is also abstracting the network infrastructure,

7

CHAPTER 2. BACKGROUND 8

so it gives a simpler logical view of the network, hence it is easier to program
the network, even for complex tra�c engineering.

The implementation of SDN, such as in OpenFlow-based SDN switch, also
gives a �exibility in terms of the number of packet header �elds that can be
observed for packet classi�cation. OpenFlow provides a capability to look at up
to 38 packet headers �elds [31] for each incoming �ow.

ONF, a non-pro�t industry consortium, took a lead to standardize SDN.
Figure 2.1 shows the SDN architecture stack de�ned by ONF:

Figure 2.1: SDN Architecture Stack

The SDN stack is devided into 3 main layers: Application, control and in-
frastructure layer. Network devices reside in the infrastructure layer. The
responsibility of infrastructure layer is to do tra�c forwarding. Compared to
traditional network, the intelligence of network devices is lower. The control-
ling responsibility resides in the control layer. This separation tally with SDN
concept of decoupling the control plane from the data/forwarding plane. On top
of simpli�ed management, this separation also provides �ner control over the
tra�c and more �exible forwarding decision based on the network conditions.
Application layer consists of the operation tool and user interfaces to manage
the network.

The communications between layers are done via the Application Program-
ming Interfaces (API). There are two types of API, Southbound and Northbound
API. Southbound API provides communication between Infrastructure Layer
(Network Devices) and Control Layer (SDN Controller). Northbound API
is used for communication between Application Layer (network tools and user
interface) and the Control Layer.

Control Layer is the most important layer of the architecture. SDN con-
troller, as the �brain� of the network, resides here. There are many SDN con-
trollers available in the market now, from the vendor speci�c to open-source
SDN controller, such as ONOS, NOX and OpenDaylight. OpenDaylight (ODL)
[13] is used as base for developing many other controllers. It is a collaborative
project by The Linux Foundation and supported by more than 20 big vendors.

CHAPTER 2. BACKGROUND 9

2.2 Overlay Network

Overlay Network is a term for de�ning a virtual network that is deployed on top
of an existing physical network (underlay network) . The overlay network allows
us to have a constant view of the network, despite the change in the physical
network, as shown on Figure 2.2. It consists of router, host and tunnels[2].
Tunnels are the overlaying mechanism of the paths in the underlay network,
which provides the connectivity links in the overlay network. A single tunnel
link is usually comprised of a set of links from the underlying network[2].

Figure 2.2: Overlay Network

There are some advantages on having overlay network, one of it is having a
simpler logical network topology. Figure 2.2 shows that overlay network, with
its virtual network, provides an abstraction of the physical network, hence the
logical topology of the network becomes simpler. The simpli�cation of logical
network makes it easier to program the network. With a simpli�ed network
topology, the complexity to implement �ner tra�c engineering can be reduced
as well.

In the SDN architecture, overlay network can �t very well due to its sim-
plicity and capability to provides abstraction of the physical network.

2.3 Locator/ID Separation Protocol (LISP)

Locator/ID Separation Protocol (LISP) is a protocol in the network that sepa-
rates network address into device identity, called Endpoint Identi�er (EID), and
device location, called Routing Locators (RLOC). LISP is di�erent with current
network addressing that combine both device identity and location into a single
namespace. EID is the address of the enduser host, that is used for transport
connectivity. RLOC is the routable IP addresses of the network attachment
points that is used for routing in the transit network. Enduser host's EID can
be reached after RLOC of the host is located. The main component of LISP
is the mapping system, which is publicly accessible. Mapping system provides
information of EID-to-RLOC mapping.

CHAPTER 2. BACKGROUND 10

In LISP, unlike the RLOC, EID can be any address type, not limited to IP
address. Other example of addresses that be used as EID are AS Number, Geo
Location etc. This �exibility for the EID address is supported by the control
message encoding in the LISP, named LISP Canonical Address Format (LCAF)
[24]. It contains the information needed for communication between mapping
system and other LISP components, that will be discussed later on.

The main problems that LISP is trying to solve with the separation is the
routing scalability problem [17]. In the current system, with single namespace,
the internet routing table grows rapidly. With the introduction of LISP, only
RLOC is advertised to the internet. EID is assigned independently from the
network topology and aggregated along the network boundaries. With this
separation, since only RLOC is advertised to the internet, the internet routing
table has lesser entries.

Figure 2.3: LISP

On top of that, separation EID and RLOC gives many other advantages,
such as mobility, scalability, etc. By doing the separation, mobility can happen
seamlessly by making the enduser host to be binded to a permanent address,
EID. When enduser host location changes, LISP tunnel router will encapsulate
the packets with a new RLOC and maintain availability the connection. By
doing aggreation of the RLOC, scalability of the routing can be achieved as well.
LISP also provides simpli�cation for incremental transition towards IPv6, by
allowing the deployment of IPv6 network on top of existing IPv4 infrastructure.

As mentioned above, The development of Open Overlay Router (OOR) is
based on the LISP protocols and it's components. The terminology used by
OOR is borrowed from LISP protocol, such as EID, RLOC, mapping system,
etc. Below are the components of LISP protocol, as shown in Figure 2.3, the
detailed functionality of each component will be discussed in the OOR section:

1. Mapping System: Mapping system is used to store the EID-to-RLOC
mapping and as interface for lookup of EID location data when requested
by the tunnel routers.

2. Ingress/Egress Tunnel Router (xTR): xTR is used for encapsulation of
outgoing packet with LISP header (ITR) or decapsulation of incoming

CHAPTER 2. BACKGROUND 11

packet's LISP header and send the packet to destination EID (ETR) in
the communication between LISP networks. For example, in Figure 2.3,
when a network 1 wants to send packets to network 2.

3. Proxy Ingress/Egress Tunnel Router (PxTR): PxTR acts like an xTR
but for the non-LISP site that wants to communicate with LISP sites.
For example, in Figure 2.3, when network 3 (non-LISP network) network
wants to send packets with network 2 (LISP network)

4. Re-encapsulating Tunnel Router (RTR): RTR is used to decapsulation
of the LISP header from the packets and re-encapsulate it again with
di�erent LISP header. For example, in Figure 2.3, when network 4 (IPv6-
only) wants to send packets to network 1 (IPv4-only)

Chapter 3

Open Overlay Router

Overlay network is one of the known implementation of SDN paradigm, that
provides the abstraction of the physical network. As discussed in the previous
chapter, one of the advantage for overlay networks implementation is easier to
program the network and reduce the complexity of performing �ner tra�c engi-
neering. Open Overlay Router (OOR) [14] is an open-source platform to create
programmable overlay network. It is written in C and support the implementa-
tion in Linux, Android and OpenWRT. Together with ODL LISPFlowMapping
module[10], OOR supports the creation of overlay network and the con�guration
of it using NETCONF/YANG. Some features of OOR are[16]:

1. Multiple encapsulation in data-plane: VXLAN and LISP

2. Control-plane: NETCONF/YANG and LISP

3. Layer 3 overlay: IPv4 and IPv6

4. Multihoming, mobility, etc.

As mentioned above, the main functionality of OOR is to create programmable
overlay network. The simple process of OOR is when a packet arrives, the
overlay router will encapsulate it as overlay packet and route it via the underlay
network to the destination. To be able to do that, the mapping system of the
overlay and underlay infrastructure must be kept updated at all time.

In this section, we will discuss about the components of OOR and some use
cases to show the life of packets in the OOR implementations.

3.1 Components

In this sub-section, more details about each component and their functionalities
will be discussed. As mentioned in the previous section, the terminology used by
OOR is borrowed from LISP protocol, including the naming for the components
and the actions taken by those components. Not all of this components are

12

CHAPTER 3. OPEN OVERLAY ROUTER 13

required to implement Open Overlay Router, only Mapping System and xTR
is mandatory. The rest of the components are optional, based on the need,
condition and requirements of each deployment.

3.1.1 Mapping System

As mentioned above, mapping system is key aspect in OOR. There are two
main components in the mapping system of OOR: Map-Server (MS) and Map-
Resolver (MR). Mapping System is a service that can be accessed publicly and
publish the mapping of EID-to-RLOC. Map-Server is the responsible for storing
the mapping database and updating it according to the changes in the network.
Map-Resolver is the interface for the lookup request (known as �map-request�)
sent by the xTR and responsible to do lookup of the EID location. When xTR
is sending map-request, it will be routed to Map-Resolver that will forward it
to Map-Server. This server can be anywhere, as long as it is accesible by the
xTRs.

When there's a change in the overlay network, ETR/PETR will send Solicit
Map-Request (SMR) [12] to the MS. Once MS received SMR, it will update
their mapping database and let the ITR/PITR know that there's a change in
the mapping, so ITR/PITR will update the cached mapping (called �map-cache�,
will be discussed in 3.1.2) in their system.

3.1.2 Ingress/Egress Tunnel Router (xTR)

Ingress/Egress Tunnel Router (xTR) works as edge router in the overlay network
and used for communication between OOR networks. ITR will receive packets
from the host, encapsulate it with LISP header and forward it to the ETR that
corresponds to destination RLOC. ETR will decapsulate the LISP header and
forward the packets to the destination host. During initialization, xTR will
send their EID and RLOC information to the MS. When there's an incoming
packet, ITR will send map-request to the Mapping System. Once ITR receives
the mapping information, they will store it in the map-cache, encapsulate the
packet and send it to destination ETR. Map-cache is subset of the mapping
database of Mapping System in the xTR, the purpose is when another packets
comes with destination EID that has been asked to Mapping System before,
ITR can directly forward the packets to the destination without sending another
map-request.

During the encapsulation process, LISP header is prepended on top of the
original packet. When packet reachesLISP header consists of three parts[17]:

1. IP Header: The IP header carries the address information of the source
and destination RLOC.

2. UDP Header: The UDP header carries the port number selected by the
ITR during the encapsulation process. UDP is chosen because it provides
enough information (port numbers) and it has zero checksum. There are
already checksums in the IP header and, probably, TCP header, if the

CHAPTER 3. OPEN OVERLAY ROUTER 14

original packet is using TCP protocol for the communication, hence the
integrity of the original packet has been covered by that.

3. LISP-speci�c header: The LISP-speci�c header contains the �ags and
reachability information needed for LISP communication with �xed length
(8 octets or 64 bits).

3.1.3 Proxy Ingress/Egress Tunnel Router (PxTR)

Proxy xTR is used to accomodate a situation where there are OOR and non-
OOR sites. The way PxTR works is similar with xTR, the only di�erence is
that PxTR is implemented as a gateway for non-OOR network to enters OOR
network. When there are packets from non-OOR site coming to OOR site,
PITR is responsible for encapsulating those packets with LISP header, sending
map-request to Mapping System (if the EID-to-RLOC mapping is not available
in the PITR map-cache) and forward the packets to destination EID, and vice
versa for PETR. When one deploy a full OOR network, PxTR is unnecessary.

3.1.4 Re-encapsulating Tunnel Router (RTR)

In some deployment scenarios, there are two OOR networks but they can't
communicate to each other directly. For example, OOR1 is using full IPv4 and
OOR2 is using full IPv6. Re-encapsulating Tunnel Router is playing very im-
portant role to bridge these two networks. When packets from OOR1 travels to
OOR2, RTR will re-encapsulate the IPv4 Packets from OOR1 with IPv6 header
so the packets can be received by OOR2 ETR and forwarded to destination EID.

3.2 Sample Use Cases

In this sub-section, we will discuss about a use case of OOR to explain more
about the packet life. The use case is for full IPv4-only OOR deployment. In the
full OOR deployment, the required components are MS/MR and xTRs. Figure
3.1 shows the process happened when a packet is sent by user 1 (EID 1) to user
2 (EID 2), including the overview of the packet structure during the process.
Below are the breakdown of the process happening in each steps:

1. When user 1 sends a packet, it will be directed to the xTR associated with
user 1 (ITR), as it happened in the normal routing process.

2. xTR does not know the RLOC of EID 2, it sends map-request to the
mapping system to ask for the mapping information for the EID of user
2.

3. Mapping system then forwards the map-request to the xTR associated
with user 2 (ETR).

CHAPTER 3. OPEN OVERLAY ROUTER 15

4. ETR sends the map-reply with the information of RLOC of the EID of
user 2 to ITR. The map-reply is stored in ITR as map-cache, so when
there's a similar request, ITR does not need to ask for the mapping again.

5. Once the ITR know where to forward the packet, it encapsulates the packet
by prepending the LISP header on top of the original packet header and
send it to the destination RLOC. The new IP header includes the RLOC of
ITR as the source address and RLOC of the ETR as destination address.

6. Once the packet reaches the ETR, it will decapsulate the packet and re-
move the extra header added in the previous step and forwards the packet
to user 2.

Figure 3.1: Full OOR Deployment Use Case

Chapter 4

Vector Packet Processing
(VPP)

As discuss in previous chapter, OOR leverages LISP protocol for its control
plane, such as for mapping update, retrieval etc. For the data plane, where
the actual packet forwarding process happens, OOR is looking at Vector Packet
Processing (VPP) platform to be integrated with the OOR platform. VPP is a
high performance packet processing platform and runs entirely in the userspace
(hardware and kernel agnostic). VPP was owned by Cisco Systems and is al-
ready running on many of the products in the market and recently the code
was released to an open-source community called FD.io (�Fido�) Project. Fido
[21] is a collaborative open source project that focuses on implementing high-
performance I/O for in the dynamic computing environments. It is a combina-
tion of several projects started with the Data Plane Development Kit (DPDK)
to support programmability in the generic hardware.

VPP creates a superframe, vector of several packets available in the network.
Once superframe is created, VPP processes the superframe through a directed
nodes graph (Packet Processing Graph), as shown in Figure 4.1. This is di�erent
with most of the packet processing platform, that process the packet one by one
in sequence through the whole graph. In VPP, the whole superframe is processed
in a node, then forwarded to the next node. By doing so, the �rst packet in
superframe is used to warm up the instruction cache in that node, so the next
subsequent packets in the superframe can be processed in higher speed. With
that approach, reliability is also increased. If there's a disruption or delay in the
processing, the following superframe will have a bigger size, but the processing
cost is still the same (only �rst packet in the superframe is used to warm up the
instrution cache), hence the system can catch up to normal rate.

On top of the high performance and reliability, VPP is also very �exible and
modular. The Packet Processing graph can be extended easily without changing
the main code. For building an extension from a node (called as plugin), one
can build it easily using a separate source code and load it to VPP's plugin

16

CHAPTER 4. VECTOR PACKET PROCESSING (VPP) 17

Figure 4.1: VPP Graph Node

directory. Plugin is introduced as a new node in the graph, as shown in Figure
3.1, hence there's no change in VPP main code.

4.1 Packet Classi�cation in VPP

In VPP, packet classi�cation is de�ned as a node, called �ip4-classify� (for IPv4)
or �ip6-classify� (for IPv6) node. Packet classi�cation is a process to �nd which
�ow that a packet belongs to and determine which action needs to be taken
for the packet. VPP has a very fast packet classi�cation model by introducing
the mask-and-match model [23]. There are two main components in the VPP
classi�er, tables and sessions.

1. Tables: Tables contain a set of session with the same mask. Mask includes
the speci�c byte positions to be checked by the system when the incoming
packets arrive. The default action, in case of no rule matches the incoming
packet, is also introduced here.

2. Sessions: Sessions are the the rules inserted by the users. It contains the
packet header information, for example, source/destination address, port
numbers, protocols etc, as the key and also the action that needs to be
taken when the rule matches the incoming packet header. More than one
sessions can be inserted in a table.

The following example can be used to better understand the process of packet
classi�cation in VPP. Say, a user wants to check the source address of all in-

CHAPTER 4. VECTOR PACKET PROCESSING (VPP) 18

Figure 4.2: Example for VPP Classi�cation Process

coming packets and if the source address is 10.10.0.3, the packet needs to be
forwarded to router with IP address 11.11.0.1, else the packet will be dropped
(default action). Below are the step-by-step process for the packet classi�cation
in that example scenario, also shown in Figure 4.2:

1. The user needs to create the table with mask to check only the source
address in the IP header and de�ne the default action. Let's say the table
is called table1.

2. Once the table is created, session is inserted to that table. The session con-
tains the source address of 10.10.0.3 and the action, forward to 11.11.0.1.

3. When packets arrive in the the �ip4-classify� node, the table informs the
node to check the packet headers only for the de�ned in the mask, in this
case only source address.

4. The node checks the source address of the packets. This process is called
as masking. The rest of the �elds in packet header are ignored.

5. After the masking process, the sessions in table1 are checked in sequence.
If a match is found, the packet takes the action indicated in that session,
otherwise, it takes the default action (drop in this case). This process is
called matching.

The more details for the packet classi�cation in VPP can be found in [17].

CHAPTER 4. VECTOR PACKET PROCESSING (VPP) 19

4.2 Why VPP?

As discussed above, VPP provides high-speed packet processing and also pro-
vides �exibility in terms of development for new plugin and management. The
superiority of VPP compared to other well-known packet processing platform,
such as Open vSwitch (OVS), has been tested by an independent test from
European Advanced Networking Test Center AG (EANTAC) . In their report
[22], EANTAC stated that VPP performance were �much more consistent and
reliable than those of Open vSwitch�. The detailed test result can be found
in[22].

On top of that, VPP supports many APIs for management and programma-
bility the platform. It supports low and high level API for the local and remote
programmability that works via shared memory bus. VPP supports many high
level API, such as netconf/yang, REST etc, so user can use any management
agent/controller that their need. This is one of the features that will be bene�-
cial in the future.

OOR choses VPP over OVS because of some other reason as well, such as,
OVS is built to match and be compatible with OpenFlow. As mentioned above,
OOR is using LISP, not OpenFlow, hence di�erent approach needed. On top
of that, OOR is still evolving, the �exibility of VPP is expected to help the
evolution of OOR, such as with the fast packet forwarding and the �exibility of
adding more plugins in the data-plane when needed, to support more advance
feature development of OOR in the future.

Chapter 5

Development

In the past, forwarding based on the destination address was enough for tra�c
engineering. The current Open Overlay Router (OOR) systems are based on
destination address for packet forwarding and supports only IPv4 or IPv6 EID
and RLOC. When a map-request is sent by the tunnel router, containing the
destination EID, mapping system will do a lookup on its own mapping database
and send back a map-reply to the tunnel router, with the destination RLOC
IP address information for the tunnel router to forward the packet. On top of
that, once map-reply is received by the tunnel router, it will be stored in the
map-cache, so if the same destination information is needed, there's no need to
ask the mapping systems again, hence, faster process and reducing the number
of control message needed to forward a packet.

Due to the increasing number of application hosted in the network, more
speci�c and �exible ruleset is needed. Because of that, the number of ruleset
inserted to the systems is increasing. Based on the experimental setup, the
current mapping and lookup systems can't scale really well to match the need
of speci�c ruleset. In this thesis, a new 5-tuple LCAF is introduced based on the
proposed multiple-lookup EID proposal [19], together with a proposal of new
mapping systems. On top of that, to be able to scale more, rule aggregation
and �ow classi�cation method are introduced and prototyped in the platforms.

5.1 5-Tuple LCAF Implementation

As mentioned in the beginning of this chapter, OOR only supports lookup and
forwarding based on destination address, so only 2-tuple LCAF is supported.
The datagram of 2-tuple LCAF is shown in Figure 5.1 below.

Due to the increased requirement for �ner tra�c engineering, 5-tuple lookup
is needed, including the IP packet header information of source/destination
address with their corresponding mask length, source/destination port numbers
and protocol. To be able to achieve that, 5-Tuple LCAF is required to be
implemented in OOR, following the proposed standard in [25]. The datagram

20

CHAPTER 5. DEVELOPMENT 21

Figure 5.1: Current LCAF in OOR (2-Tuple)

of 5-tuple LCAF is shown in Figure 5.2.

Figure 5.2: Proposed 5-Tuple LCAF

To implement the the LCAF, a new structure is de�ned in the OOR for
LCAF 5-tuple header, consisting of the information needed from the header.
For now, the 5-tuple LCAF is registered as Type 17. The LCAF information
is transmitted as part of the control message communication. By implementing
the 5-Tuple LCAF, tunnel router can now send map-request with information of
the addresses (including the mask length), source/destination port numbers and
protocol. As seen on the Figure 5.2, there are lower and upper port numbers,
in the current implementation, both of lower and upper port will have the
same value. By adding the support for 5-tuple LCAF, it provides �exibility to
implement application-speci�c or �ner tra�c engineering rules.

5.2 5-Tuple Mapping System

As mentioned above, the current mapping system of OOR is based on the map-
ping between destination EID and RLOC. To implement the 5-tuple or other
lookup, a di�erent structure of mapping database is needed. In this section, the
proposed new mapping systems is discussed.

There are three types of databases implemented in the systems: Network

CHAPTER 5. DEVELOPMENT 22

Information Base (NIB), Routing Information Base (RIB) and Forwarding In-
formation Base (FIB). NIB stores the whole database of rules in the network.
The rule is inserted directly to the OOR control plane or via SDN controller.
NIB resides in the mapping systems of OOR. NIB also de�nes the default ac-
tion, the action taken if the incoming packet cannot �nd any match rules in
the NIB. RIB contains a subset of mapping from the NIB as a map-cache in
the tunnel routers of OOR. The contents of RIB are achieved via the map-reply
from mapping systems, when map-cache cannot be found. The last one is FIB,
the mapping database in the data plane. FIB is the database used in the actual
packet forwarding process. In the current OOR implementation, RIB and FIB
is de�ned as single information base.

When there's an incoming packet, it will always �rst check the FIB for the
mapping information. In the case of cache miss (map-cache cannot be found),
it will send a map-request to the higher layer of information base, as shown in
Figure 5.3. In the current OOR implementation, the 2-tuple lookup process is
based on longest pre�x match (LPM). Due to the complexity of implementing
LPM for 5-tuple lookup, the proposed solution is using exact match as the
lookup mechanism.

Figure 5.3: Mapping Lookup Process

The goals of proposed mapping systems are to provide faster lookup and
forwarding process and to reduce the amount of map-request/map-reply message
between databases. The database format includes the 5-tuple information as
the key, match/action �eld and tag (for NIB and RIB). That format is used
for the inserted tra�c engineering rules, that consists of key and match/action
information. The match/action �eld contains the destination RLOC and the

CHAPTER 5. DEVELOPMENT 23

action needs to be taken, such as forward or drop packet and re-encapsulate.
The tag �eld is generated automatically to give information if the rules has
been copied to the lower layer or not. The processes in the mapping system are
broken down to three process: insertion, update and removal.

• Insertion: Tra�c engineering rule is inserted in the NIB and added to
RIB when there's a map-request. When there's a cache miss, RIB sends
map-request to NIB and NIB sends all the rules that matches the source
address. The reason behind that is source address is tied to EID behind
the tunnel router, hence it is assumed that the rules with that source
address will come up often. Afterwards, NIB updates the tag of all the
copied rules as �copied to the lower layer� or �C�, as shown in Figure 5.4.

• Update/Removal: In the event of removal or update in the NIB, the
tag will be checked. If NIB sees that the tag of updated/removed rules
as �copied to the lower layer�, it sends Solicit Map-Request (SMR) to the
RIB to inform that one or more rules has been updated/removed. If the
rules are updated, RIB sends another map-request to ask for the updated
rules, else it deletes the rules from its database. Otherwise, the removed
or updated rules will only a�ect NIB.

Figure 5.4: Proposed Mapping System

Regarding the update of FIB, it's same like above, except it will request for
the rules from the RIB. Figure 5.4 shows the proposed mapping databases and
the lookup process for an incoming packet. On the lookup from NIB to RIB, it
will happen multiple times until the RIB get all of the information needed, as
shown in Figure5.4, hence from a single request, RIB might get more than one
new entry. When FIB requests a mapping from RIB, the control plane, where
RIB resides, builds mapping data in the format that can be used directly by the
FIB, that is later sent to the FIB for the actual forwarding process.

CHAPTER 5. DEVELOPMENT 24

In this thesis, we are focusing on the mapping system with 5-tuple informa-
tion. The lookup process for 5-tuple information is using exact match, hence
the number of rules stored in the information bases can be very big. To tackle
this concern, a new way to aggregate and classify �ows are needed to reduce the
number of stored rules and increase the performance in regards to the lookup
process when the number of rules are big. In the next section, techniques for
rule aggregation and �ow classi�cation are introduced.

5.3 Rules Aggregation and Flow Classi�cation

With the increasing number of �ows and rules needed, due to the increase of
application hosted in the network, to be applied in the systems, the requirement
for memory to store those rules are also increasing rapidly, together with the
processing latency during the classi�cation process. In this section, rules aggre-
gation and �ow classi�cation method are proposed and discussed in details to
tackle those problem. The aggregation algorithm is expected to be implemented
in the NIB and classi�cation is implemented in the FIB.

The implementation of aggregation and classi�cation method is aligned with
the current VPP classi�cation method. In VPP, as mentioned in Chapter 4, the
classi�cation is done based on the mask-and-match model. Mask has to be
pre-de�ned with speci�c length, hence matching for variable sized header is
not supported. The basic concepts of our proposed solutions are splitting the
rules into each packet header �elds (5-tuple in our case, so 5 header �elds),
implementing multiple tables in the classi�er system with multiple masks for
each packet header �elds, as a work around to accomodate wildcarding, and
limiting the wildcard positions in the rule aggregation, such that it is positioned
in sequence from the last bit, so the number of tables can be minimized.

5.3.1 Rules Aggregation

VPP does not support variable-sized header (wildcarding) mask to de�ne the
classi�er table because the mask has to be pre-de�ned before creating the clas-
si�er table. Having wildcards in the rule means that they need a di�erent mask
with the rule with no wildcards. When users inserted a rule with wildcarding
(netmask or range), rule needs to be broken down to some entries to remove the
wildcards. For example, a rule with port number ranging from 16 to 22 needs
to be broken down to 7 entries. When the number of rules increase, especially
for the rules with wildcards, the requirement for space to store those rules also
increase signi�cantly, hence the system cannot scale.

The purpose of the proposed rules aggregation algorithm is to give users
�exibility to use wildcards and minimize the number of entries that needs to
be stored while still maintaining the accuracy of the rules. In this algorithm,
the rules are splitted into each packet header �elds, and then the wildcards in
the aggregated entries are de�ned in sequence from the last bit of each header
�elds, so it can be predicted easily by the system. By de�ning the wildcard

CHAPTER 5. DEVELOPMENT 25

position in that manner, the possibility of the mask that needs to be de�ned to
accomodate the rules can be minimized compared to if the position of wildcards
can be anywhere. For example, as shown in Table 5.1, when there's a rule with
the size of 4 bits, with this algorithm we only need to de�ne 4 tables, instead of
15 tables if we let the wildcards to appear in any positions. Since the possible
mask combination can be reduced, the number of tables can be minimized as
well. Once the position of the wildcards are known, each entry is automatically
inserted to a table with the suitable mask by the system. In the proposed
algorithm, each rule is processed in the algorithm independently from the other
rules.

Predicted Wildcards Free Wildcards Position

1111 1111 0111 1010 0010
1110 1110 1100 0101 0100
1100 1101 1001 0110 1000
1000 1011 0011 0001

*1 means that the bit position needs to be checked in the classi�cation process
and 0 means that the bit positions can be neglected in the process

**0000 is not a valid mask since that means no bit positions need to be checked

Table 5.1: Number of Mask Possibility: Predicted vs Free Wildcards

To understand the algorithm, �rst we have to discuss about the variables
in the algorithm. Rule Ri is the vector of entries Ei

j in binary format, where
i = {1, 2, · · · } is the rule number and j = {1, 2, · · · } is the entry number. Each
Ei
j has k members of sub-entries eik,j with k is each �eld information (for 5-

tuple, k = {1, 2, · · · , 5}) in the observed raw packet format. In the end, matrix
Ri has size of j × k.

Ri =


Ei

1

Ei
2
...
Ei
j

 =


ei1,1 ei2,1 ei3,1 ei4,1 . . . eik,1
ei1,2 ei2,2 ei3,2 ei4,2 . . . eik,2
...

...
...

... . . .
...

ei1,j ei2,j ei3,j ei4,j . . . eik,j


When users insert rules to the system, the system automatically converts the

rules to binary format. The length or size of the rules in binary format has been
de�ned in [32]. Once we populated the matrix, we can start the aggregation
process. Ri is inserted to Algorithm 5.1 and the result is R

′

i. In the algorithm,
we leverage the fact that the entries are always ordered. The algorithm checks
every entries from the �rst entry (j = 1) to the last and every packet header
�elds in each entry, from the �rst packet header �eld k = 1 until the last
packet header �elds in the entry (k = 5 in 5-tuple scenario). The bits in each
eik,j are numbered and then processed from the last bit to the �rst. Variable
a = {1, 2, · · · , blog2 j − 1c} is introduced as a way to predict how many bits
(from the last bit position) are possible to be aggregated, for example, if we
have 5 rules, only the last 2 bits from each header �elds are possible to be

CHAPTER 5. DEVELOPMENT 26

aggregated. By doing so, we can limit the computation only to the bit positions
that are possible to be aggregated, hence the process can be faster. Once we
have the len value, We also introduce the spacing variable s to couple the same
bit position in two di�erent entries, for example, for bit position 1, entry j = 1
is coupled with j = 2, for bit position 2, entry j = 1 is coupled with j = 4.
The coupled bit position is compared, if they have two di�erent value (0 and
1), then the bits in that bit position from j to j+ s are replaced with wildcards
” ∗ ”, otherwise do nothing.

Algorithm 5.1 Rule Aggregation
Input: Ri
Output: R

′

i

R
′

i = Ri
for j = 1 to j do
for k = 1 to k do
for a = 1 to a = blog2 jc do
s(a) = 2a − 1
len = Length[eik,j]

if eik,j+s(a)[[len− a− 1]]− eik,j [[len− a− 1]] = 1 then

R
′

i[j . . . j + s(a)] = ” ∗ ”
end if

end for
end for

end for
Remove all duplicated entries from R

′

i

For example, a user inserts a rule with parameters as shown in Table 5.2
(including the conversion to binary format and the size in bits):

Fields Value Binary Size

Source IP Address 172.205.10.1 {1,0,1,0,1,1,0,0,1,1,0,0,1,1,0,1
,0,0,0,0,1,0,1,0,0,0,0,0,0,0,0,1}

32 bits

Destination IP Address 245.206.13.2 {1,1,1,1,0,1,0,1,1,1,0,0,1,1,1,0
,0,0,0,0,1,1,0,1,0,0,0,0,0,0,1,0}

32 bits

Source Port Number 80 {0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,0} 16 bits
Destination Port Number 20-24 {0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0}

{0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0}
{0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0}
{0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0}
{0,0,0,0,0,0,0,0,0,0,0,1,0,1,0,0}

16 bits

Protocol TCP (6 [26]) {0,0,0,0,0,1,1,0} 8 bits

Table 5.2: Inserted rules by the users

The matrix R1 for the sample rule above is (for simplicity reason, only last

CHAPTER 5. DEVELOPMENT 27

4 bits of each �eld are written):

R1 =


{0, 0, 0, 1} {0, 0, 1, 0} {0, 0, 0, 0} {0, 1, 0, 0} {0, 1, 1, 0}
{0, 0, 0, 1} {0, 0, 1, 0} {0, 0, 0, 0} {0, 1, 0, 1} {0, 1, 1, 0}
{0, 0, 0, 1} {0, 0, 1, 0} {0, 0, 0, 0} {0, 1, 1, 0} {0, 1, 1, 0}
{0, 0, 0, 1} {0, 0, 1, 0} {0, 0, 0, 0} {0, 1, 1, 1} {0, 1, 1, 0}
{0, 0, 0, 1} {0, 0, 1, 0} {0, 0, 0, 0} {1, 0, 0, 0} {0, 1, 1, 0}


Since the matrix is already populated, we can start the aggregation process.

As seen from the example above, from 1 rule, we have 5 entries (j = 5), with
di�erent destination port numbers. The matrix R1 is inserted into Algorithm
5.1. For this example, we are focusing on the destination port number only,
since other �elds do not need to be aggregated. Since we have 5 rules, only
the 2 bits from each header �elds are possible to be aggregated (a = {1, 2}), in
this case bit number 4 (a = 1,s = 1) and bit number 3 (a = 2,s = 3). For bit
position 4, entry j is coupled with j+1 and for bit position 3, entry j is coupled
with j + 3. Figure 5.5 shows the coupling and wildcarding process.

Figure 5.5: Coupling and Wildcarding Process

The result of the aggregation is shown as R
′

1 below:

R
′

1 =

[
{0, 0, 0, 1} {0, 0, 1, 0} {0, 0, 0, 0} {0, 1, ∗, ∗} {0, 1, 1, 0}
{0, 0, 0, 1} {0, 0, 1, 0} {0, 0, 0, 0} {1, 0, 0, 0} {0, 1, 1, 0}

]
R

′

1 can be aggregated to only 2 entries, hence the number of rules that is
stored in the information base can be minimized without compromising the
accuracy of the original rule.

5.3.2 Flow Classi�cation

Flow classi�cation is a process to �nd which �ow that a packet belongs to
and determine which action needs to be taken for the packet. The goal for
implementing �ow classi�cation is to decrease processing latency as it will reduce
the time needed to do lookup in the information base. The basic idea of the
classi�cation algorithm came from [20] and modi�ed to better �t the requirement
and the implementation in VPP. The main idea of this algorithm is to split the
rules into smaller multiple lookup tables and to pinpoint the incoming packets

CHAPTER 5. DEVELOPMENT 28

to the speci�c lookup table with smaller set of rules that are already carefully
selected, hence the lookup process can be more e�ective and the lookup time
can be reduced.

As shown in Figure 5.6, the main process is the pre-�ltering process. In
pre-�ltering, rules or incoming packets headers are checked in one or more pre-
determined bit location to determine which lookup table to check for the map-
ping process. The process to determine the bit locations is called as e�ective
bits selection. The bit locations are selected carefully by the system to make
sure that it can split the rulesets into smaller multiple lookup table as even as
possible. The position of bits selected is called E�ective Bit Position (EBP).

The classi�cation system consists of o�ine and online classi�cation stages[20],
as shown in Figure 5.6.

• O�ine: When users insert a rule to the system, the system does pre-
�ltering for the inserted rules by the users, then insert the rule to most
suitable lookup tables.

• Online: When packets comes to the system, the incoming packets is pre-
�ltered, then �nd the exact match from the candidate entries.

Figure 5.6: Proposed Classi�cation Process

Below are the process to determine the e�ective bit position (EBP) used in
the pre-�ltering process:

• Find Diversity Index H(q) for each bit position in each �eld: Diversity
index is determined by calculating the entropy of each bit position of the
entries stored in the information base, except the bit position that contains
wildcard (�*�). The bit positions with high diversity index (high entropy)
shows that the bits in that position has most even distribution of zeros and
ones. That means if we �lter the entries in the information base based on
that bit position, the entries are distributed more evenly. By distributing

CHAPTER 5. DEVELOPMENT 29

the entries evenly, the number of entries in each lookup tables can be
minimized. The formula for the calculation is shown in Equation 5.3.2,
where q is the bit position, j is the total number of entries, and Nq

a is the
total occurrence of bit a in a speci�c bit position q. Equation 5.3.1 shows
the equation to calculate the probability p of each bit value showing in a
speci�c bit position of q. If p1(q) or p0(q) is equal to 0, then H(q) = 0

pa(q) =
Nq
a

j
(5.3.1)

H(q) =
∑

a={0,1}

pa(q) log
1

pa(q)
(5.3.2)

• Calculate Independence Index Ind between bits position in all �eld: In-
dependence index notates the correlation between bits positions, to ensure
that if more than one bit chosen as the EBP, they have high independence.
If two or more bits has high independence, it draws a good distinction
between entries in the ruleset. Independence index is calculated as the
mutual information between bits position, based on the diversity index
calculation from the previous step. More number of e�ective bit means
more number of lookup tables, hence lesser number of entries in each ta-
ble. Equation 5.3.4 shows the calculation of Independence Index for the
case where two EBP is needed, but it can be expanded to more EBP
when necessary. To make the process faster, calculate Ind only for the bit
positions with H(q) > 0.

H(qβ | qα) =
∑

a={0,1}

pa(qα, qβ) log pa(qβ |qα) (5.3.3)

Ind(qα, qβ) = H(qβ)−H(qβ | qα) =
∑

a={0,1}

p(qα, qβ) log
p(qα, qβ)

p(qα)p(qβ)
(5.3.4)

From both calculation, as mentioned above, the best result is when the
bits position has high diversity index and, in the case of more than one EBP
is required, high independence index between those bits position. Since the
calculation results of Diversity Index and Independence Index can be con�icting,
the priority is to select the bit position with highest diversity index �rst and
another bit position that has high independence index with it. After the EBP
calculation, when users insert rules, it will be pre-�ltered and assigned to the
most suitable lookup tables (o�ine stage) and when there's an incoming packet,
it will also be pre-�ltered, forwarded to the suitable lookup table �nd the exact
match from the candidate entries inside that particular lookup table. If no
match is found, then packet will take the default action.

In the beginning of implementation for new �ow classi�cation platform, we
don't usually have any entries inside the information base. For this case, the
EBP is chosen at random to get the system going. On top of that, EBP needs

CHAPTER 5. DEVELOPMENT 30

to be updated periodically, for example once a day, to ensure the validity of
the EBP, especially after the addition or removal of many entries in the system.
The goal of updating EBP regularly is to make sure that the number of entries
in the lookup tables can be minimized most of the time.

5.3.3 Sample Use Case

Say that user is entering 3 rules (R0 to R2) in the system and Table 5.3 shows
its aggregated entries R

′
. Those aggregated entries is used to determine the

E�ective Bit Position. In this thesis, the number of e�ective bits chosen for
the system is pre-determined manually. For this sample use case, 2 EBP will
be selected, hence in total there will be 4 lookup tables. For the calculation
of Diversity Index and Independence Index in this sample use case, Table 5.4
shows the value of variables used for the calculations. Table 5.5 shows the
calculation for Diversity Index. From the calculation, we can see that q = 3
in source address and q = 4 in destination address has the highest Diversity
Index, hence they are good candidates for EBP. Table 5.6 shows the calculation
for Independence Index. In this calculation, we includes all q with H(q) > 0, in
this case, only q = {3, 4, 5} from source address and q = {3, 4} from destination
address. Based on the Independence Index, the pairing of q = 3 in source
address and q = 4 in destination address has the highest Independence Index.
From these calculations, we can decide that the EBP are to be the bit position
3 in source address and bit position 4 in destination port �eld.

No. SRC Address DST Address SRC Port DST Port Protocol Action

E1 00011 0001∗ ∗ ∗ ∗ ∗ ∗ 101 ∗ ∗ 00110 action1
E2 00011 00100 ∗ ∗ ∗ ∗ ∗ 101 ∗ ∗ 00110 action1
E3 00101 00010 ∗ ∗ ∗ ∗ ∗ 10110 10001 action2
E4 00110 00010 ∗ ∗ ∗ ∗ ∗ 10110 10001 action2
E5 00111 0000∗ ∗ ∗ ∗ ∗ ∗ 101 ∗ ∗ ∗ ∗ ∗ ∗ ∗ action3

Table 5.3: Aggregated Entries of R0 to R2

Variables Value

a {0, 1}
q {1, 2, 3, 4, 5}
j 5

Table 5.4: Variables for Calculations

In the o�ine stage, 4 lookup tables are created and the EBP for each entries
is checked (pre-�ltering). For example, for e1, the EBP is 01, hence it will be
inserted to lookup table 01. After all entries has been checked, the lookup tables
will look as shown in Figure 5.7.

CHAPTER 5. DEVELOPMENT 31

SRC Address a = 0 a = 1 H(q)

q = 1 p0(1) =
5
5 = 1 p1(1) =

0
5 = 0 0**

q = 2 1 0 0**
q = 3 p0(3) =

2
5 p1(3) =

3
5

2
5 log

5
2 + 3

5 log
5
3 = 0.292

q = 4 1
5

4
5 0.217

q = 5 1
5

4
5 0.217

DST Address a = 0 a = 1 H(q)

q = 1 1 0 0**
q = 2 1 0 0**
q = 3 4

5
1
5 0.217

q = 4 2
5

3
5 0.292

q = 5 N/A* N/A* N/A*

SRC Port a = 0 a = 1 H(q)

q = 1 N/A* N/A* N/A*
q = 2 N/A* N/A* N/A*
q = 3 N/A* N/A* N/A*
q = 4 N/A* N/A* N/A*
q = 5 N/A* N/A* N/A*

DST Port a = 0 a = 1 H(q)

q = 1 0 1 0**
q = 2 1 0 0**
q = 3 0 1 0**
q = 4 N/A* N/A* N/A*
q = 5 N/A* N/A* N/A*

Protocol a = 0 a = 1 H(q)

q = 1 N/A* N/A* N/A*
q = 2 N/A* N/A* N/A*
q = 3 N/A* N/A* N/A*
q = 4 N/A* N/A* N/A*
q = 5 N/A* N/A* N/A*

* The bit position has one or more wildcards, hence the H(q) does not need to
be calculated

** Since one of pa(q) is equal to zero, H(q) is treated as being equal to zero.

Table 5.5: Calculation of Diversity Index

After that, there is an incoming packet as shown in Figure 5.8, called as
packet1. The EBP is checked by the system then forwarded to lookup table 10
and checked as an exact match with candidate entries inside table 10. Since
there's only one candidate entry e5 inside table 10 and it provides an exact
match with packet1 the action is retrieved, hence packet1 will do action3.

5.3.4 Implementation in VPP

We introduced a new plugin in VPP, called as �class-new� as the implementation
of the proposed solution. The plugin supports the proposed �ow classi�cation
method combined with the mask-and-match lookup method provided by VPP.

For the implementation in VPP, 4 EBP is selected, so the plugin has 16
set of classi�cation lookup tables and one EBP table for pre-�ltering. Each set
of tables has ten tables, including tables for source/destination address with
multiple netmasks, port numbers and protocol, so in total the classi�cation
plugin has 160 classi�cation lookup tables and one EBP table. The breakdown
for the table numbers is shown in Table 5.7.

The EBP table (Table 0) has two parts: EBP and entry number for each
EBP. Entry number or N is the decimal representation of the EBP, with value

CHAPTER 5. DEVELOPMENT 32

SRC Addr DST Addr H(qβ) H(qβ |qα) Ind(qα, qβ)

qα = 3 qβ = 3 0.217
∑

a={0,1}
pa(qα, qβ) log pa(qβ |qα)

= 0.253

H(qβ)−H(qβ |qα) = −0.036

qα = 4 qβ = 3 0.217 0.176 0.041
qα = 5 qβ = 3 0.217 0.176 0.041
qα = 3 qβ = 4 0.292 0.120 0.172
qα = 4 qβ = 4 0.292 0.311 −0.019
qα = 5 qβ = 4 0.292 0.311 −0.019

Table 5.6: Calculation for Independence Index

Figure 5.7: O�ine Stage: EBP checking and lookup tables after pre-�ltering

from 0 to 15. For example, if the rule or incoming packet has EBP 0000, the
entry number N is 0 or if it has EBP 0001, N is 1 and so on. Entry number
represents which set of classi�cation lookup tables is the most suitable for that
rule or packet. For example, if incoming packets has EBP 0101, means N is 5,
based on Table 5.7, hence the set of tables of the be checked for the classi�cation
this this packet is from Table 56 to Table 65.

The decision for implementing ten lookup tables for each EBP was taken
to tackle the �exibility problem in terms of wildcarding in the built-in classi�-
cation. In the built-in classi�cation module, if users wants to use wildcarding,
such as netmask or ranges for IP address or port numbers, they have to create
a new table with the masking that is suitable with their wildcarding require-
ment. Other alternative is break the rules into smaller entries manually and
insert it one-by-one to the classi�cation table. This limitation can increase the
complexity for inserting a complex tra�c engineering rules.

CHAPTER 5. DEVELOPMENT 33

Figure 5.8: Online Stage

Table Entries Stored

0 EBP
1 +N ∗ 11 to 4 +N ∗ 11 Source addresses with di�erent netmasks
5 +N ∗ 11 to 8 +N ∗ 11 Destination addresses with di�erent netmasks

9 +N ∗ 11 Protocols
10 +N ∗ 11 Source and Destination Port Numbers

Table 5.7: class-new table break down

In the new plugin, it creates all the multiple tables automatically with di�er-
ent mask for each header �elds, for example, source and destination IP address
has tables to accomodate /32, /24, /16 and /8 netmask. By doing so, for insert-
ing rules with wildcards, the plugin decides which table that is most suitable
for that rules with wildcards. If the plugin can't �nd the exact table that can
accomodate the wildcarding of the rules, it will �nd the table with the closest
mask and break it down to smaller entries so it can be inserted to that table,
without compromising the accuracy of the original rules. For example, if the
rule has the source IP pre�x with /22 netmask, rather than creating a new table
with mask to match that or break it down to many entries with /32 netmask,
the system breaks the source IP pre�x into 4 addresses with /24 netmask

The �class-new� plugin on VPP has some extra functions compared to the
current VPP classi�cation plugin, below are the most important one:

• class_gen: This function is used for the automation to create Table 0 with
entries of the EBP, for pre-�ltering, based on the entries from the previous
section. When the new plugin is enabled, this function will generate the
entries to represent the EBP. On top of that, this functions generates all
the required lookup table-sets for the classi�cation process.

• class_add_del_class: This function is enabled when users input the rules
(Figure 5.9). It act as the o�ine stage of the classi�cation process. When

CHAPTER 5. DEVELOPMENT 34

there's new rule, this function automatically sends the rule to Table 0 for
pre-�ltering and get the entry number. Once it gets the entry number
information, it inserts the rule into the lookup tables. The capability to
choose the most suitable mask for rules with wildcards, as described above,
is also included in this function.

Figure 5.9: Classi�cation o�ine stage at VPP

• class_node_fn: This function is used for the online stage of the classi�ca-
tion process (Figure 5.10). When there's an incoming packet, this function
checks if the packet has entry number information. If not, this function
starts to do pre-�ltering by sending the packet to Table 0 and re-circulates
the packet to this plugin again with the entry number information. Oth-
erwise it sends the packet to the most suitable lookup tables set (based
on the entry number) and starts the matching process from in that ta-
bles (from source IP address until port numbers). If match is found, the
packet takes the indicated action attached to the rule otherwise the packet
is dropped right away (default action is dropping the packet).

CHAPTER 5. DEVELOPMENT 35

Figure 5.10: Classi�cation online stage at VPP

Chapter 6

Results

In this chapter, we will discuss �rst about the simulation and testing setup
together with the procedures and the tools used in the simulation and testing.
Afterwards, the result of simulation and testing for the rules aggregation and
�ows classi�cation method will be discussed.

6.1 Simulation and Testing Environment

The simulation were carried out with Mathematica to build the system-level
simulation, to check if the proposed methods can works properly, before the im-
plementation in the testbed. To deploy the testing environment in the testbed,
four Ubuntu 14.04.3 virtual machines are used for di�erent purposes:

• VM1: Used as border routers with �ve IP addresses to connect to the
internet, management and connection to other VMs. VPP (version 16.09)
and Classbench software resides in this virtual machines. The pre-�ltering
module is also implemented in this machine.

• VM2 and VM3: Used as the xTRs of OOR (version 1.0) setup and also
for packet generator for the classi�cation testing.

• VM4: Used as the mapping system of OOR and also packet generator for
the testing.

All the results were taken from the simulation result (the simulation and
implementation gave same result), except the lookup times results, it is taken
from the implementation of the plugin in the testbed.

To generate the synthetic rules for the aggregation and classi�cation, we
used Classbench [10], a packet classi�cation benchmarking tool. Classbench
provides 12 real-world rules distribution, for the purpose of this thesis, 10 rules
distribution are used. More information about Classbench can be found in [10].

For the packet generation, we used hping3 [11], a tool to generate ping-like
custom TCP/IP packets. With hping3, we can generate TCP/IP packets with

36

CHAPTER 6. RESULTS 37

Figure 6.1: Testbed Setup

various headers information, including multiple protocols, port numbers, packet
size etc.

6.2 Rules Aggregation

To observe the minimum achievable number of aggregated rules with the in-
corporation of the rule aggregation algorithm, we generated rulesets using 10
di�erent rule distribution using Classbench, three sets for each rule distributions.
The distributions that we used was ACL{1,3,4,5}, FW{1,2,3,5} and IPC{1,2}.
The synthetic rules generated was processed with the rule aggregation algorithm
before stored in the NIB.

From Figure 6.2, we can see that with incorporating the aggregation algo-
rithm in the testbed, the number of entries stored in the NIB can be reduced.
For example, from Figure 6.2 (a) when the number of original entry is 100000,
it can be aggregated to less than 50000 entries. From Figure 6.2 (b), we can see
as well that when the original entries are increasing, the rule can be reduced
even more, for example, when we have 20000 entries, the aggregated entries
is only around 58% of the original entry and for 60000 entries, the aggregated
rules is around 42% of the original entry. In Figure 6.2 (b), we can see that the
percentage of remainder of aggregated entries (compared to the number without
aggregation) is distributed exponentially, to �nd the minimum achievable aggre-
gated rules, FindMinimum function in Mathematica is used and the minimum
achievable aggregated rules for this algorithm is around 41.4% of the original
rules.

We can conclude that with incorporating the aggregation algorithm in the
synthetic rules that is , we can reduce the space required to store the entries
in the NIB up to 41.4% compared to the one without rule aggregation. By
reducing the required space, cost can be reduced as well

CHAPTER 6. RESULTS 38

(a)

(b)

Figure 6.2: Aggregation Result: (a) Aggregated Entries (b) Percentage of Ag-
gregated Rules

6.3 Flow Classi�cation

In this section, comparison was made between the basic classi�cation, that only
has a single lookup table to store all the tra�c engineering rules, and the pro-
posed classi�cation method, with multiple lookup tables and pre-�ltering by
EBP, as dicussed in the previous chapter. In the basic classi�cation, the rules
were checked orderly in the table, whereas for the proposed methods, incoming
packets were forwarded to a speci�c lookup tables with entries that has been
pre-�ltered. The aggregated entries from the previous section are inserted to
the tables in this nodes with pre-calculated EBP. As mentioned above, once
the entries are inserted to the tables in VPP, when there's an incoming packet,
it will check the table and do the checking for the entries inside the tables in
sequence.

In Figure 6.3, we can see the comparison of the number of entries that needs
to be checked for the worst case scenario: the match is found in the last entry

CHAPTER 6. RESULTS 39

of the table. With the simulation, we can see that after around 30 entries, the
proposed classi�cation always checked less number of entries. In average only
56.9% of the aggregated entries is checked. The result as such was expected,
since with the new algorithm, the rulesets are distributed evenly to multiple
lookup tables, whereas without it, the rules are stored in the single big table.

Figure 6.3: Number of Entries checked during the classi�cation process

To prove the performance improvement with this algorithm, we did a test
regarding the lookup times with real packets generated by hping3 in the testbed.
The packets were generated simultaneously from VM2, VM3 and VM4 with
random protocol and port numbers. Source and destination address was �xed
since we have to make sure that the packets is coming from the VMs to VPP
in VM1. The number of packets generated was 60 for each ruleset and the
reading from the last 30 packets were taken. This step was taken to make sure
that the system was already stable. Figure 6.4, shows that after 76 entries,
by incorporating the aforementioned classi�cation method, the lookup times is
smaller compared to system without the classi�cation method.

From the testing result above, we can conclude that by incorporating the
classi�cation method discussed in the previous chapter, we can minimize the
packet processing time by the systems in regards to the lookup time, especially
for big systems with large number of rules that needs to be inserted.

6.4 Analysis

From the result of simulation and testing shown above, we can see that by incor-
porating the rules aggregation algorithm in the mapping system helps to reduce
the number of entries stored. The reduction of the stored entries correlates to
lower the requirement for the storage. The �ow classi�cation in the data-plane
helps to reduce the lookup times, hence lower processing latency. The combina-
tion of both exposes the ability to reduce the processing latency even more as

CHAPTER 6. RESULTS 40

Figure 6.4: Lookup times comparison

well as further improving the scalability of the systems while still maintaining
the precision of the routing system.

The rule aggregation helps to remove the redundant bits in the entries in
systematic way, hence it can reduce the storage requirement, and still providing
�exibility for multiple systems, even the systems that cannot support variable
length header (wildcarding), such as VPP. Another bene�t of the rule aggrega-
tion is that with smaller number of entries, the lookup times can be reduced as
well.

By observing the aggregated entries, we can calculate the e�ective bit po-
sition (EBP) of the system. With EBP, we can split the entries into multiple
smaller lookup tables evenly and forward the incoming packets into a speci�c
lookup tables. As the result of that, the packets will only be checked against
the pre-�ltered rules, hence the decrease of the lookup times.

As shown in the previous section, implementation of both rules aggregation
and �ow classi�cation methods with 5-tuple information results in up to 58.6%
(maximum achieved) saving in the storage requirement and 29.6% (maximum
achieved) reduction in the processing latency.

Chapter 7

Conclusions

7.1 Summary

The introduction of SDN paradigm gives a huge degree of �exibility in terms
of the packet headers �elds that can be observed for tra�c engineering, for
example as much as 38 packet header �elds can be observed by OpenFlow-based
SDN switch. SDN also decouples control plane from the network and create
logically centralized control plane that gives the global view of the network,
hence it is easier to implement �ner tra�c engineering. One of the well-known
SDN implementation is overlay network, which provides network abstraction by
building a virtual network on top of physical network, that simplify the logical
topology of the network so the network is easier to program. Those capabilities
come with costs, it does not scale well for huge number of rules, since the
processing latency and requirement for storage to store the rules increases.

In this thesis, we investigated scalability problem faced by network owners
because of the increasing number of applications hosted in the network - to
provide granularity in terms of tra�c engineering and quality of service with as
low processing latency and storage requirement as possible, by incorporating the
proposed rule aggregation and �ow classi�cation method. The proposed solution
in this thesis was optimized for tra�c engineering with 5-tuple information,
since we believe that tra�c engineering with 5-tuple information are adequate
for majority number of network owners. The proposed rule aggregation was
introduced to reduce the number of entries, hence it can minimize the storage
requirement to store those rules. The proposed �ow classi�cation method was
introduced to reduce the processing latency by splitting the rules into smaller
multiple lookup tables and directing the incoming packets into speci�c lookup
tables, that has been pre-�ltered.

We brought the real life scenario into simulation and our testbed with mul-
tiple packet classi�cation scenario. With the incorporation of the proposed rule
aggregation algorithm, the number of entries was decreased, that corresponds
to reduction of the storage space required by the system, compared to the sys-

41

CHAPTER 7. CONCLUSIONS 42

tem without the aggregation algorithm. The implementation of the proposed
�ow classi�cation method in the system resulted in the reduction of the lookup
time for the classi�cation, compared to the systems with basic packet classi�-
cation method. We also implemented the proposed solution for classi�cation as
a plugin for the Vector Packet Processing (VPP) platform.

The results indicate that the combination of rule aggregation and �ow clas-
si�cation can decrease the storage space requirements as well as the processing
latency for packet classi�cations, especially for systems with huge number of
tra�c engineering rules that needs to be implemented. A point to note is that
the assessments performed here are based on simple assumptions and setups.
Hence, the results should be seen as indication of the technology potential,
rather than as de�nitive estimation of the real life performance.

7.2 Future Works

The works done in this thesis can hopefully lead to more researches in the packet
classi�cation area. We invite researchers to look more into the extension of the
proposed aggregation and classi�cation method.

The proposed rule aggregation is assuming that each rules are independent,
no correlation with other rules, but there might be some duplicated entries be-
cause of rule overlapping. It is interesting to extend the proposed algorithm
to tackle the rule overlapping problem so more space can be saved. On top of
that, the algorithm is checking each bits of the rules and do simple arithmetic
calculation, hence it is slow if the number of bits is high, such as in IPv6 imple-
mentation or when the number of �eld is increased. Therefore, it is important
to �nd a faster way for the calculation inside the algorithm.

The extension of the �ow classi�cation method is also interesting to explore,
such as another parameters to de�ne the EBP and how to dynamically adjust
the EBP and the lookup tables in real time. The calculation to determine the
number of e�ective bit also interesting to explore, because in this thesis, the
number of e�ective bit chosen as EBP is pre-determined, hence it might not
be e�ective for large system. On top of that, the e�ectiveness of the proposed
method with extension of more �elds and in larger and more realistic setup and
packets needs to be observed as well.

Bibliography

[1] J. Touch, "Dynamic Internet overlay deployment and management using
the X-Bone", Computer Networks, vol. 36, no. 2-3, pp. 117-135, 2001.

[2] A. Parekh, "Routing on Overlay Networks", 2002.

[3] Open Networking Foundation (ONF), �Software-De�ned Networking: The
New Norm for Networks�, 2012

[4] V. Srinivasan, S. Suri and G. Varghese, "Packet classi�cation using tuple
space search", ACM SIGCOMM Computer Communication Review, vol.
29, no. 4, pp. 135-146, 1999.

[5] D. Kreutz, F. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg, S.
Azodolmolky and S. Uhlig, "Software-De�ned Networking: A Comprehen-
sive Survey", Proceedings of the IEEE, vol. 103, no. 1, pp. 14-76, 2015.

[6] O. Rottenstreich, I. Keslassy, A. Hassidim, H. Kaplan and E. Porat, "On
�nding an optimal TCAM encoding scheme for packet classi�cation", 2013
Proceedings IEEE INFOCOM, 2013.

[7] T. Lakshman and D. Stiliadis, "High-speed policy-based packet forward-
ing using e�cient multi-dimensional range matching", ACM SIGCOMM
Computer Communication Review, vol. 28, no. 4, pp. 203-214, 1998.

[8] K. Kogan, S. Nikolenko, O. Rottenstreich, W. Culhane and P. Eugster,
"SAX-PAC (Scalable And eXpressive PAcket Classi�cation)", ACM SIG-
COMM Computer Communication Review, vol. 44, no. 4, pp. 15-26, 2014.

[9] S. Singh, F. Baboescu, G. Varghese and J. Wang, "Packet classi�cation
using multidimensional cutting", Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for computer com-
munications - SIGCOMM '03, 2003.

[10] B. Lantz, B. Heller and N. McKeown, "A network in a laptop", Proceedings
of the Ninth ACM SIGCOMM Workshop on Hot Topics in Networks -
Hotnets '10, 2010.

43

BIBLIOGRAPHY 44

[11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J.
Rexford, S. Shenker and J. Turner, "OpenFlow", ACM SIGCOMM Com-
puter Communication Review, vol. 38, no. 2, p. 69, 2008.

[12] P. Gupta and N. McKeown, "Classifying packets with hierarchical intelli-
gent cuttings", IEEE Micro, vol. 20, no. 1, pp. 34-41, 2000.

[13] H. Lim, N. Lee, G. Jin, J. Lee, Y. Choi and C. Yim, "Boundary Cutting
for Packet Classi�cation", IEEE/ACM Transactions on Networking, vol.
22, no. 2, pp. 443-456, 2014.

[14] A. Rodriguez-Natal, "Open Overlay Router Wiki", GitHub, 2016. [On-
line]. Available: https://github.com/OpenOverlayRouter/oor/wiki. [Ac-
cessed: 05- Aug- 2016].

[15] "OpenDaylight Lisp Flow Mapping:Architecture - OpenDay-
light Project", Wiki.opendaylight.org, 2016. [Online]. Available:
https://wiki.opendaylight.org/view/OpenDaylight_Lisp_Flow_Mapping:Architecture.
[Accessed: 05- Aug- 2016].

[16] A. López Brescó, "Open Overlay Router Features", GitHub, 2016. [Online].
Available: https://github.com/OpenOverlayRouter/oor/wiki/Features.
[Accessed: 05- Aug- 2016].

[17] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis, "The Locator/ID Separa-
tion Protocol (LISP)", RFC 6830, January 2013.

[18] "The OpenDaylight Platform | OpenDaylight", Opendaylight.org, 2016.
[Online]. Available: https://www.opendaylight.org/. [Accessed: 05- Aug-
2016].

[19] N. Chowdhury and R. Boutaba, "A survey of network virtualization", Com-
puter Networks, vol. 54, no. 5, pp. 862-876, 2010.

[20] C. Hsieh and N. Weng, "Many-Field Packet Classi�cation for Software-
De�ned Networking Switches", Proceedings of the 2016 Symposium on Ar-
chitectures for Networking and Communications Systems - ANCS '16, 2016.

[21] "The Fast Data Project", Fd.io, 2016. [Online]. Available: https://fd.io.
[Accessed: 05- Aug- 2016].

[22] Light Reading and European Advanced Networking Test Center AG, "Val-
idating Cisco's NFV Infrastructure", 2016.

[23] "VPP/Introduction To N-tuple Classi�ers - fd.io", Wiki.fd.io, 2016.
[Online]. Available: https://wiki.fd.io/view/VPP/Introduction_To_N-
tuple_Classi�ers. [Accessed: 05- Aug- 2016].

[24] D. Farinacci, D. Meyer, and J. Snijders, "LISP Canonical Address Format
(LCAF)", RFC Draft, July 2016.

BIBLIOGRAPHY 45

[25] A. Rodriguez-Natal et al., "LISP support for Multi-Tuple EIDs", RFC
Draft, January 2016

[26] "Protocol Numbers", Iana.org, 2016. [Online]. Available:
http://www.iana.org/assignments/protocol-numbers/protocol-
numbers.xhtml. [Accessed: 05- Aug- 2016].

[27] "ClassBench: A Packet Classi�cation Benchmark", Arl.wustl.edu, 2003.
[Online]. Available: http://www.arl.wustl.edu/classbench/. [Accessed: 05-
Aug- 2016].

[28] "hping3(8) - Linux man page", Linux.die.net, 2016. [Online]. Available:
http://linux.die.net/man/8/hping3. [Accessed: 05- Aug- 2016].

[29] http://www.cs.huji.ac.il/~feit/papers/exp05.pdf

[30] A. Feldman and S. Muthukrishnan, "Tradeo�s for packet classi�cation",
Proceedings IEEE INFOCOM 2000. Conference on Computer Communi-
cations. Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies (Cat. No.00CH37064), 2000.

[31] https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-speci�cations/open�ow/open�ow-switch-v1.5.1.pdf

[32] https://tools.ietf.org/html/rfc790

[33] B. Pfa�, "The design and implementation of Open vSwitch", Proc.
USENIX Symp. NSDI, pp. 117-130, 2015

[34] B. Vamanan and T. Vijaykumar, "TreeCAM", Proceedings of the Seventh
COnference on emerging Networking EXperiments and Technologies on -
CoNEXT '11, 2011.

[35] N. Gude, T. Koponen, J. Pettit, B. Pfa�, M. Casado, N. McKeown and
S. Shenker, "NOX", ACM SIGCOMM Computer Communication Review,
vol. 38, no. 3, p. 105, 2008.

[36] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian, �Fabric:A ret-
rospective on evolving SDN�, Proceeding in 1st Workshop Hot Topics Soft-
ware De�ned Networking, pp. 85-90, 2012.

TRITA TRITA-EE 2016:148

www.kth.se

